

INDICATEUR MACROPHYTES DANS LES LAGUNES OLIGO-HALINES ET MÉSO-HALINES

Ana Elena SÁNCHEZ et Patrick GRILLAS

1. Introduction

Contexte de l'étude Problématique Objectifs

2. Matériel et méthodes

Zone d'étude
Valeur indicatrice des espèces
Bilan sur l'état des lagunes
Caractériser les états de référence

3. Résultats

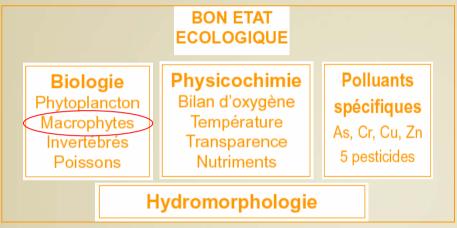
Valeur indicatrice des espèces État des lagunes

- causes de la turbidité
- synthèse des analyses

Caractérisation des états de référence des lagunes Métrique de l'état du compartiment macrophytes Application de la métrique

4. Discussion

5. Conclusions et perspectives


1. INTRODUCTION

1. INTRODUCTION: Contexte de l'étude

Mise en œuvre de la Directive Cadre sur l'Eau (2000/60/CE):

 Critères à évaluer pour la définition de l'état écologique des masses d'eau:

• Classification des lagunes selon la salinité:

<0,5%: eau douce

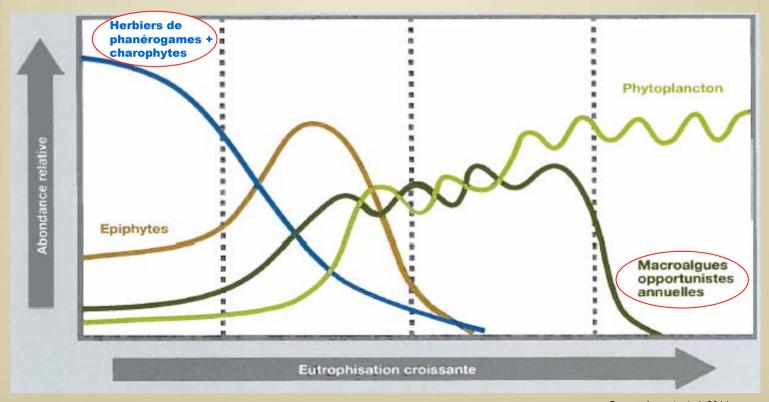
0,5 à <5%: oligohalin

5 à <18%: mésohalin

18 à <30%: polyhalin

30 à <40%: euhalin

 Protocole IFREMER de diagnostic des macrophytes lagunaires bien adapté pour les lagunes salées et avec limites pour les lagunes dessalées:


Projet 2010 (Grillas & David, 2010):

- Nouveau protocole pour les lagunes dessalées testé dans 4 lagunes
- Résultats n'étaient pas en cohérence avec le degré de dégradation des lagunes
- Besoin de travaux complémentaires sur un échantillon plus large de lagunes => Projet 2012

1. INTRODUCTION: Problématique

Les macrophytes des lagunes oligo-halines et méso-halines:

- Macrophytes: Phanérogames (plantes à fleurs) et Macro-algues
- Fonction structurante du milieu: production primaire, support alimentaire et habitat
- Paramètres de forçage : salinité, lumière et nutriments
- Problématique majeure: dynamique de l'eutrophisation:

Source: Lauret et al. 2011

1. INTRODUCTION: Objectifs

- ➤ L'élaboration d'une liste des espèces caractéristiques de ces milieux
- ➤ La détermination de la valeur indicatrice de chaque espèce par rapport à l'eutrophisation, la salinité et la lumière
- L'identification des conditions de référence des lagunes oligo- et mésohalines
- L'établissement d'une métrique pour l'indicateur macrophytes pour l'évaluation de l'état écologique dans le cadre de la DCE

2. MATÉRIEL ET MÉTHODES

2. MATÉRIEL ET MÉTHODES: Zone d'étude

<u>Lagunes oligo-halines:</u> <u>Lagunes méso-halines:</u>

Scamandre Ca

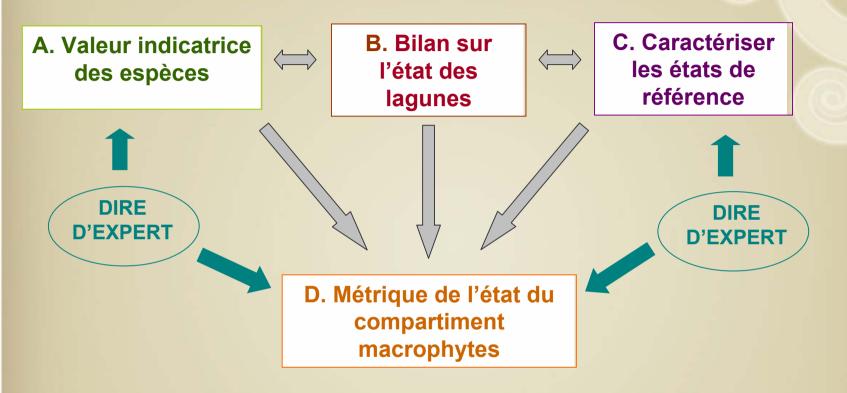
Crey

Charnier

Grande Palun

Campignol

Marette


Bagnas

Vendres

Bolmon

2. MATÉRIEL ET MÉTHODES

A. Valeur indicatrice des espèces:

- Recherche bibliographique: Liste des espèces et leur écologie
- Analyse des données eau, sédiments et macrophytes

2.MATÉRIEL ET MÉTHODES

B. Bilan sur l'état des lagunes:

Données:

- Peu nombreuses : notamment en PACA (Grande Palun et Bolmon)=> déséquilibre
- Hétérogènes: 2 sources de données: RSL et FILMED => méthode, station, fréquence et paramètres distincts

Pour augmenter le jeu de données: Stations méso-halines de Or et Biguglia inclus

Analyses:

- Droites de régression: causes de la turbidité
- Analyse canonique des correspondances: relation espèces-milieu
- Arbres de décision: classification des lagunes en fonction de la:

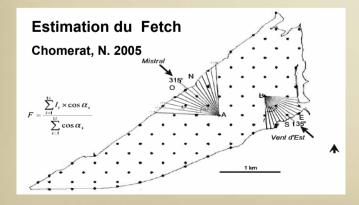
Salinité

Turbidité

Chlorophylle-a


Trophie

2. MATÉRIEL ET MÉTHODES


C. Caractériser les états de référence:

- Recherche sur les états historiques: manque de données
- Approche théorique des états de référence: causes de la turbidité naturelle:
 - => formation de colloïdes en fonction de la salinité (0-10)
 - => remise en suspension par les vagues: Théorie des vagues:

$$L = \frac{gT^2}{2\pi}$$

$$\frac{gT}{2\pi V} = 1.20 \tanh \left[0.077 \left(\frac{gF}{V^2} \right) \right]$$

Indice de sensibilité à la re-mise en suspension de chaque lagune => Calcul de la vitesse du vent (V) nécessaire pour la remise en suspension :

- Estimation du Fetch au centre
- L/2 considérée égal à la profondeur maximale

3. RÉSULTATS

3. RÉSULTATS: A. Valeur indicatrice des espèces

			Lagunes					Fráguanca			
Groupe	Espèce	Bg	Во	Cg	GP	Ch	Cr	Mr	Sc	Vd	Fréquence
	Potamogeton pectinatus	++	+++	+++	+++	*		+++	+++	+++	8
mes	Myriophyllum spicatum	*				+++	*		*		4
ogal	Ruppia cirrhosa	*		+						+	3
nérc	Ceratophyllum demersum	*				+					2
Phanérogames	Potamogeton crispus								++		1
	Potamogeton pusillus										0
tes	Chara aspera					+			+		2
phy	Chara baltica					*					1
Charophytes	Chara globularis						*				1
ch	Lamprothamnium papulosum										0
	Genre										
	Chaetomorpha sp.	*	*		*			*		*	5
sen	Ulva sp.	*	*	*	*					*	5
alg	Cladophora sp.		*			*	*		*		4
Macro-algues	<i>Gracilaria</i> sp.		*	*							3
Ma	Monostroma sp.							*			1
	Ceramium sp.							*			1

3. RÉSULTATS: A. Valeur indicatrice des espèces

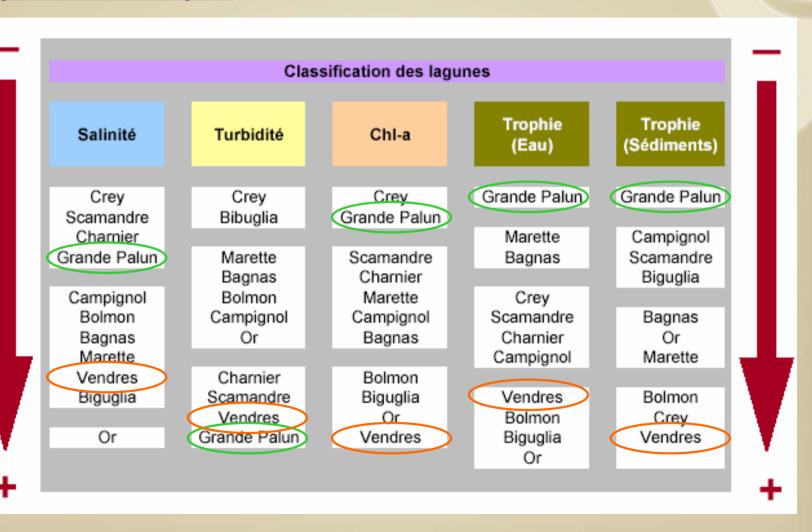
	Espèces		Tolérance	
	Especes	Trophie	Salinité	Turbidité
S	Lamprothamnium papulosum	0	•	0
hyt	Chara aspera	0	0	0
Charophytes	Chara globularis	<u> </u>	<u> </u>	<u> </u>
ភ	Chara baltica	0	0	0
	Ruppia cirrhosa	0	•	0
Jes	Potamogeton pusillus	0	0	0
Phanérogames	Potamogeton crispus	•	0	0
nérc	Potamogeton pectinatus	•	0	•
Pha	Myriophyllum spicatum	•	<u> </u>	•
_	Ceratophyllum demersum	•	•	•
	Chaetomorpha sp.	0	0	•
e s	Ulva sp. (Incl. Enteromorpha)	•	0	0
Macro-algues	Monostroma sp.	•	<u> </u>	0
Ç.	Cladophora sp.	0	0	•
≥ a	Gracilaria sp.	0	0	0
	Ceramium sp.	0	0	0

Très tolérante	•
Tolérante	0
Peu tolérante	0
Très peu tolérante	0
Non Tolérante	

3. RÉSULTATS: B. Bilan sur l'état des lagunes

Causes de la turbidité: Solides en Suspension vs Phytoplancton

Lagunos	<u>_</u>	Turbidité (NTU)						
Lagunes	n	Min.	Max.	Médiane	DCE			
GrandePalun	7	24.0	101.0	45.2	Mauvais			
Scamandre	15	9.5	69.6	37.5	Médiocre			
Charnier	15	1.7	93.9	35.9	Médiocre			
Vendres	30	3.6	77.0	30.4	Médiocre			
Bolmon	2	18.5	48.7	23.0	Moyen			
Campignol	37	1.5	48.5	17.4	Moyen			
Marette	54	2.6	72.2	11.0	Moyen			
Bagnas	25	2.3	101.0	8.7	Bon			
Crey	15	0.9	11.5	2.2	Très bon			


Lagunas		Chl-a (μg/L)						
Lagunes	n	Min.	Max.	Médiane	P90	DCE		
Vendres	30	1.0	528.2	85.5	361.0	Mauvais		
Bolmon	2	32.3	113.0	52.0	100.5	Mauvais		
Bagnas	25	4.5	119.0	11.8	63.9	Mauvais		
Campignol	37	0.7	65.2	7.6	27.2	Médiocre		
Charnier	15	0.5	25.4	15.6	23.8	Médiocre		
Scamandre	15	0.5	25.1	13.2	23.5	Médiocre		
Marette	54	1.4	56.1	11.1	22.7	Médiocre		
GrandePalun	7	6.0	16.1	14.2	16.0	Moyen		
Crey	13	0.5	3.9	0.5	3.4	Très bon		

Corrélation	Bagnas	Campignol	Vendres	Marette	Scamandre	Crey	Charnier	Grande Palun	Bolmon
Turb Salinité		– R²=0.128		- R²=0.305	+ R²=0.680		+ R²=0.424	- R²=0.698	
Turb Chl-a	+ R ² =0.432		+ R²=0.388		+ R²=0.307	+ R ² =0.788	+ R²=0.706		
n	24	37	30	53	13	13	15	5	5

Solides en suspension	Phytoplancton	?
Marette	Bagnas	Scamandre
Grande Palun	Vendres	Charnier
Campignol	Crey	Bolmon

3. RÉSULTATS: B. Bilan sur l'état des lagunes

Synthèse des analyses

3. RÉSULTATS: C. Caractérisation des états de référence

				I = I		
Lagune	Surface (ha)	Profondeur maximale (m)	Fetch (m)	V (km/h)	L/2 (m)	Sen
Marette	100	2	550	37	2.0	
Bolmon	578	1.8	800	29	1.9	
Vendres	750	1.5	625	27	1.5	
Chamier	480	2	1200	27	2.1	
Scamandre	600	2	1300	25	2.0	
Crey	140	1.5	720	25	1.5	
Bagnas	300	1.3	680	22	1.3	
Campignol	115	1	525	20	1.0	
Grande Palun	120	0.9	800	15 /	0.9	

Sensibilité au vent:									
_									

Année 2010	Vent>18	Vent>21	Vent>25	Vent>28	Vent>36
(station météo à la Tour du Valat)	(km/h)	(km/h)	(km/h)	(km/h)	(km/h)
% jours dans l'année	56%	49%	42%	36%	24%

Condition de référence:

> Recouvrement végétal et profondeur maximale de l'herbier sont limités par la turbidité naturelle

3. RÉSULTATS: D. Métrique de l'état du compartiment macrophytes

(1)

Si RV < 5% Pas de métrique

SI RV > 5% Métrique suivante:

(2)

Barycentre (Ba) = $\frac{\Sigma \text{ (Abondance espèce x Valeur de groupe)}}{\Sigma \text{ des abondances}}$

GROUPE 1

- L. papulosum

C. aspera

- C. baltica

VALEUR 1

GROUPE 2

C. globularis

R. cirrhosa

- P. pusillus

VALEUR 0.8

GROUPE 3

- P. pectinatus

M. spicatum

P. crispus

- Ceramium sp.

VALEUR 0.6

GROUPE 4

- C. demersum

- Gracilaria sp.

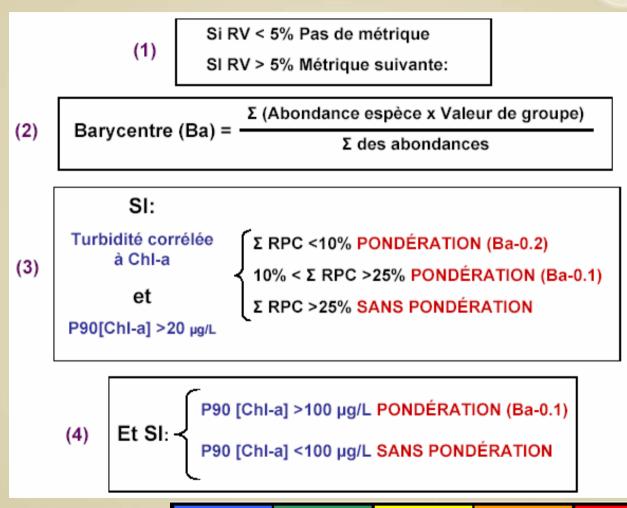
Chaetomorpha sp.

VALEUR 0.4

GROUPE 5

UIva sp.

Monostroma sp.


Cladophora sp.

- Cyanobactéries

VALEUR 0.2

Classement (DCE):	Très bon	Bon	Moyen	Médiocre	Mauvais	
	≥ 0,8	[0,6 - 0,8[[0,4 - 0,6[[0,2 - 0,4[< 0,2	

3. RÉSULTATS: D. Métrique de l'état du compartiment macrophytes

Classament (DCE):	Très bon	Bon	Moyen	Médiocre	Mauvais
Classement (DCE):	≥ 0,8	[0,6 - 0,8[[0,4 - 0,6[[0,2 - 0,4[< 0,2

3. RÉSULTATS: D. Application de la métrique

Métrique testée dans 4 lagunes (données abondance Grillas & David, 2010)

Lagune	Charnier			Grande Palun		Scamandre			Bolmon			
Espèces	Ms	Cd	Pp	Ca	Pp	Ch	Pp	Рс	Ca	Pp	UI	Су
Abondance par espèce	305	2	22	13	172	9	52	24	1	78	3	7
Valeur du groupe	0.6	0.4	0.6	1	0.6	0.4	0.6	0.6	1	0.6	0.2	0.2
Abondance x valeur	183	0.8	13.2	13	103.2	3.6	31.2	14.4	1	46.8	0.6	1.4
Σ (abondance espèce x valeur de groupe)	210			106.8			46.6		48.8			
Σ des abondances	342			181		77		88				
Barycentre	0.61			0.59		0.61		0.55				

Paramètre	Charnier	Grande Palun	Scamandre	Bolmon	
Barycentre sel	0.61	0.59	0.61	0.55	
Pondération	Turb vs Chl-a	+	-	+	+
Turb vs Chl-a +	P90Chl-a	23.8	16.0	23.5	100.5
et	RPC %	60%	36%	13%	10%
P90 Chl-a > 20 μg/L	Pondération	(-0.0)	-	(-0.1)	(-0.2)
Pondération Chl-a très élevée	P90Chl-a > 100 μg/L	-	-	1	(-0.1)
Indice Ma	0.61	0.59	0.51	0.25	
État du co	Bon	Moyen	Moyen	Médiocre	

3. RÉSULTATS: D. Application de la métrique

Métrique testée dans 4 lagunes (données abondance Grillas & David, 2010)

Salinité	Turbidité	Chl-a	Trophie (Eau)	Trophie (Sédiments)	Classement "indicateur macrophytes"
Crey Scamandre	Crey Bibuglia	Crey Grande Palun	Grande Palun	Grande Palun	Très bon
Charnier	Dibagila	Oranae r alan	Marette	Campignol	
Grande Palun	Marette	Scamandre	Bagnas	Scamandre	Charnier Bon
	Bagnas	Charnier		Biguglia	
Campignol	Bolmon	Marette	Crey		
Bolmon	Campignol	Campignol	Scamandre	Bagnas	Grande Palun Moyen
Bagnas	Or	Bagnas	Charnier	Or	Scamandre
Marette	Charnier		Campignol	Marette	
Vendres	Scamandre	Bolmon			
		Biguglia	Vendres	Bolmon	Bolmon Médiocre
Biguglia	Grande Palun	Or	Bolmon	Crey	
Or	Vendres	Vendres	Biguglia	Vendres	
			Or		Mauvais

4. DISCUSION

4. DISCUSSION

Indicateur macrophytes dans les lagunes oligo-halines et méso-halines					
POINTS FORTS	FAIBLESSES				
Meilleure adaptation aux degrés de dégradation que les classements antérieures	• Espèces dans le groupe 1 rares: difficulté d'atteindre l'état très bon				
Prend en compte: Turbidité naturelle du milieu Dominance des espèces mésotrophes	Sensibilité élevée à la méthode de mesure du recouvrement des espèces				

Besoins:

- > Tester l'indicateur dans un échantillon plus large de lagunes
- Protocole terrain à l'ensemble des lagunes, modifié à partir de Grillas & David (2010) :
 - Augmenter le nombre de stations en bordure et à l'abri du vent

5. CONCLUSIONS ET PERSPECTIVES

5. CONCLUSIONS ET PERSPECTIVES

- La turbidité est un phénomène majeur dans les lagunes dessalées
 - Causes anthropiques et naturelles.
 - Peut être plus forte
- Les charophytes: espèces les plus sensibles à la turbidité (abondance plus faible)
- Le recouvrement végétal n'est pas maximal dans les conditions de référence malgré la faible profondeur de ces lagunes (turbidité naturelle)
- La composition spécifique varie en fonction de la salinité, surtout dans le bas de la gamme
- Les espèces mésotrophes sont très abondantes et elles ont une faible valeur indicatrice
- Les résultats de cette étude sont préliminaires à cause du manque des données:
- > Suite des travaux:
 - Approfondir l'étude sur les causes de la turbidité: Solides en suspension
 - Approfondir la connaissance sur l'état trophique et les herbiers dans ces lagunes
 - Tester l'indicateur

