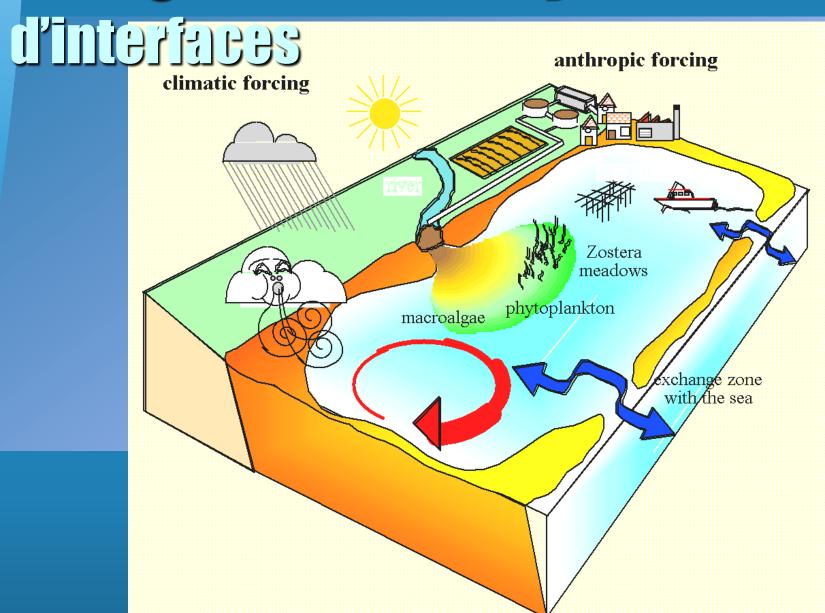
## Pesticides & Lagunes

#### **Etat des connaissances actuelles**

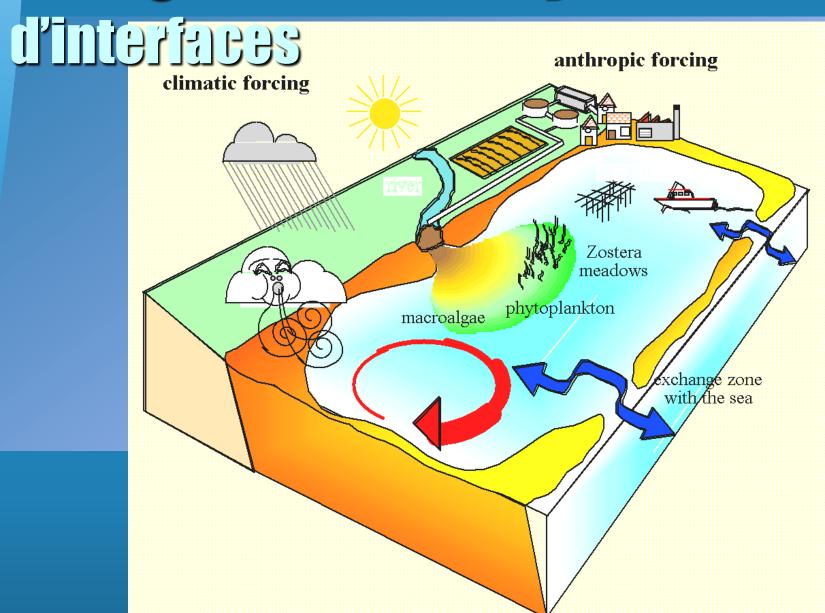
#### **Dominique MUNARON**

Ifremer

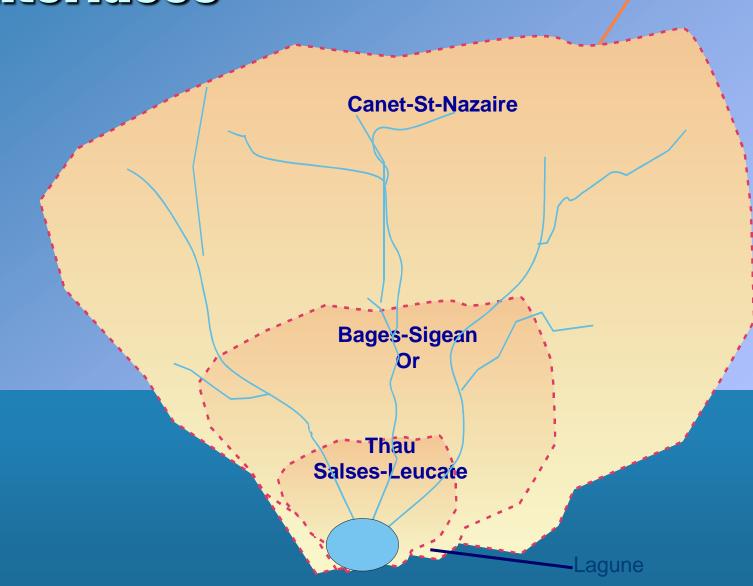

LER-LR: Laboratoire Environnement-Ressources Languedoc-Roussillon Sète



"Zero pesticide dans nos communes littorales", Arles, 11/12/12

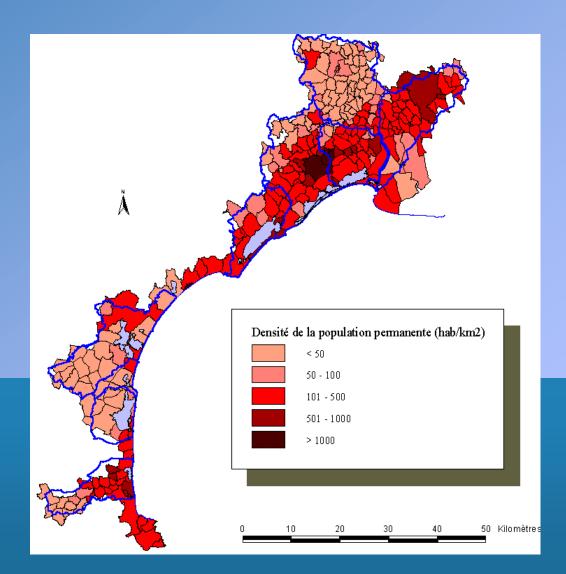

## Les lagunes Une spécificité méditerranéenne!

## Les lagunes : des écosystèmes






## Les lagunes : des écosystèmes




## Les lagunes : des écosystèmes d'interfaces



#### Les lagunes : des écosystèmes d'interfaces Augmentation de la population

+ 60 % en LR en 30 ans



## Les lagunes : des écosystèmes menacés, à préserver!

- Atmosphère / lagune
- Mer / Lagune
- Bassin versant & sa population / Lagune
- Sédiment lagune / colonne d'eau lagune



RICHES ET DIVERSIFIES

**COMPLEXES** 

**DYNAMIQUES** 

**PRODUCTIFS** 

**ANTHROPISES** 

Intérêts Ecologiques,
Patrimoniaux (faunistique,
floristique...) & Economiques,

## Les Pesticides

## **Étymologie : Pesticide**

Prefixe Pest-: de l'Anglais qui signifie « animal, insecte ou plante nuisible », lui même provenant du latin « Pestis » qui signifie « Fléau » en général et « maladie dangereuse » en particulier.

**Suffixe -cide : du latin « caedo, cadere » qui signifie « tuer »** 

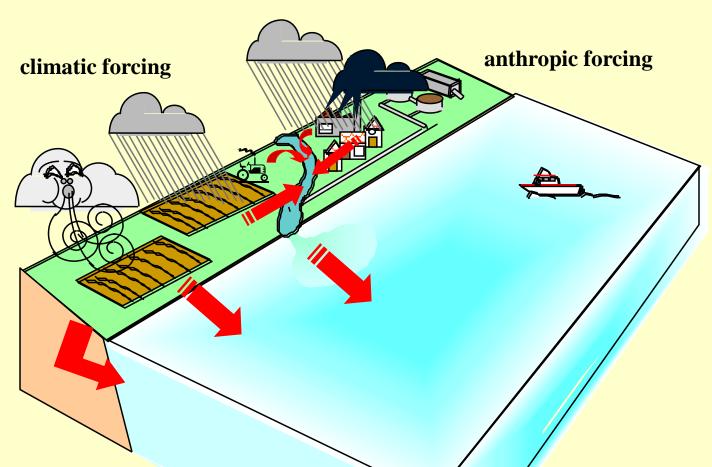
#### **Sensu stricto:**

« Un pesticide est un produit chimique destiné à éliminer, tuer, lutter contre la prolifération des parasites/nuisibles, animaux et végétaux »

## **Synonymes: Pesticide**

- Biocide (« Bios » : La vie & « -cide » Tuer)
  (utilisé hors contexte agricole)
- **Nénobiotique** (du Grec « Xenos » : Etranger & « Bio La vie)
- <u>Produit phytopharmaceutique</u> : (utilisé en agriculture)
  (Produit qui lutte contre les maladies des plante)
- Produit Phytosanitaire : (utilisé en agriculture)
  (Produit qui agit pour la santé des plantes!)

### Les Pesticides, Définition :

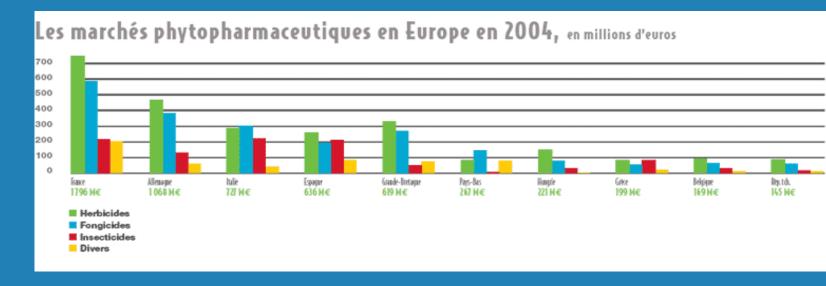

Composés chimiques utilisés pour lutter contre les organismes dits « nuisibles » (insectes, mauvaises herbes...)

Les grandes familles : Insecticides, Herbicides, Fongicides...

#### **Sources principales:**

- **Agriculture**,
- **A Traitement du bois et des sols,**
- *a* Entretien des espaces verts et de la voirie,
- **Q** Usages par les particuliers, usages vétérinaires
- **a** Jusqu'à il y a peu : démoustication

#### Transfert vers le milieu marin



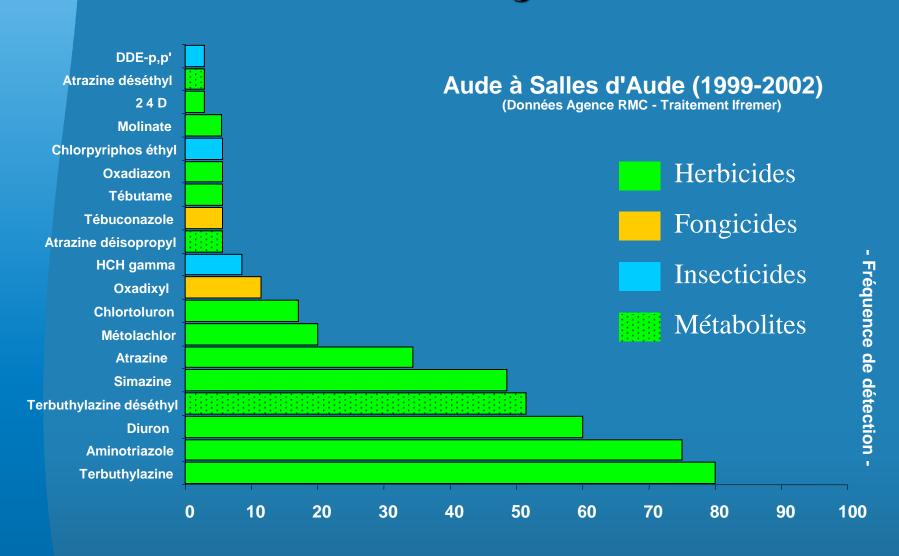

Apports diffus (lessivage des sols, infiltrations, transfert par voie aérienne...)

Apports ponctuels (rejets directs, accidentels ou non)

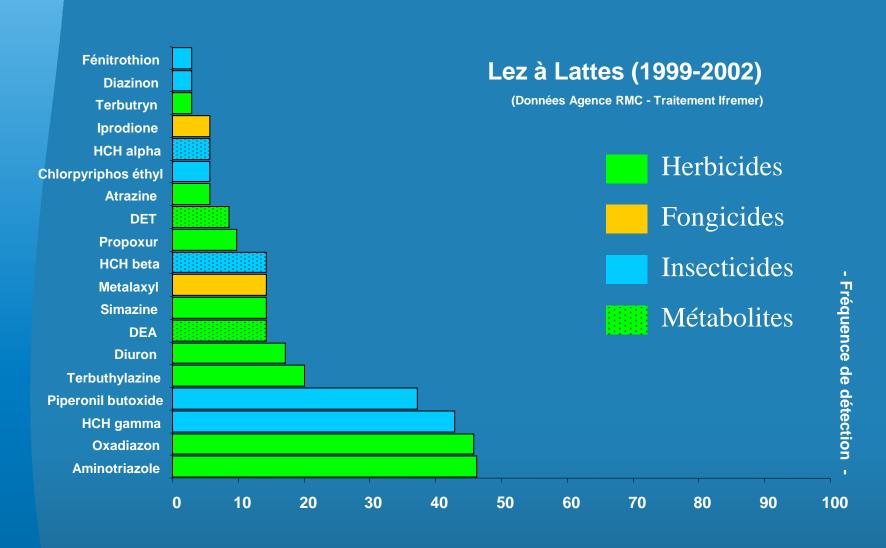
## Elements de contexte : Consommation de pesticides

\[
 \int \text{la France est le 1er utilisateur de pesticides en Europe (en volume total) et le 3eme dans le monde (~ 75 000 t/an)




- Une consommation de l'ordre 5,4 kg de matières actives/ha de terres arables ce qui la place :
  - au 4e rang européen sur ce critère (Portugal/PB/Belgique)
  - au dessus de la moyenne européenne

## Qualité des eaux en France


- ¿ La contamination touche aussi bien les eaux superficielles (96% des points de mesure) que les eaux souterraines (61%)
- **Les 10 pesticides les plus quantifiés dans l'eau des cours d'eau de métropole entre 2007 et 2009, source Agence de l'Eau 2010**

| 2007               |                            | 2008                |                            | 2009               |                            |  |
|--------------------|----------------------------|---------------------|----------------------------|--------------------|----------------------------|--|
| Pesticide          | Taux de quantification (%) | Pesticide           | Taux de quantification (%) | Pesticide          | Taux de quantification (%) |  |
| AMPA               | 43,1                       | AMPA                | 52,6                       | AMPA               | 51,4                       |  |
| Diuron             | 23,7                       | *Atrazine déséthyl  | 32,3                       | *Atrazine déséthyl | 33,1                       |  |
| Glyphosate         | 22,2                       | Glyphosate          | 31,9                       | Glyphosate         | 25,6                       |  |
| *Atrazine déséthyl | 20,5                       | Diuron              | 31,4                       | Naled              | 25,3                       |  |
| 2,4-D              | 13,8                       | Isoproturon         | 20,8                       | 2,4-D              | 20,2                       |  |
| *Atrazine          | 13,5                       | Chlortoluron        | 19,8                       | Chlortoluron       | 16,8                       |  |
| Métolachlore       | 11,9                       | Quinmerac           | 16,1                       | Diuron             | 16,3                       |  |
| Isoproturon        | 10,4                       | Naled               | 15,5                       | Isoproturon        | 15, 1                      |  |
| Aminotriazole      | 10,2                       | Bentazone           | 13,8                       | Métolachlore       | 12,7                       |  |
| Bentazone          | 9,5                        | *2-hydroxy atrazine | 13,7                       | Bentazone          | 12,0                       |  |

#### Zoom sur les apports en pesticides par des cours d'eau en liaison avec des lagunes



#### Zoom sur les apports en pesticides par des cours d'eau en liaison avec des lagunes



## Les pesticides dans les lagunes

- Manque réel de données dans les eaux littorales Causes :
  - Faible représentativité spatiale et temporelle des échantillons d'eau ponctuels
  - Limites analytiques dues aux fortes dilutions des masses d'eau côtières
  - Multitude des petits exutoires fonctionnant comme des oueds
- *a* Biomonitoring



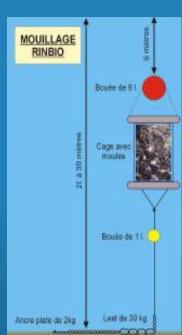
#### **Monitoring passif**







# Recherche des pesticides en milieu côtier et lagunaire par Biomonitoring

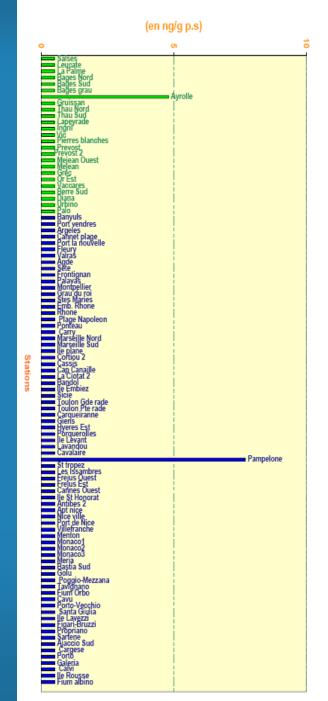

RINBIO: Réseau Intégrateurs BlOlogiques

(depuis 2000)

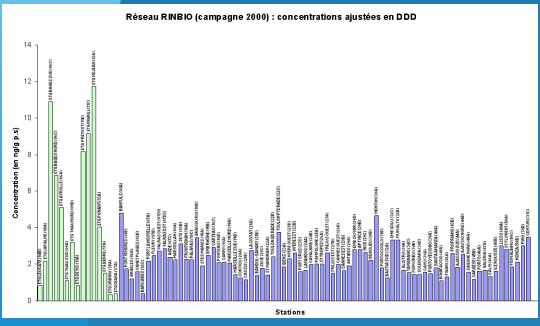
ROCCH: Réseau de suivi de la contamination chimique

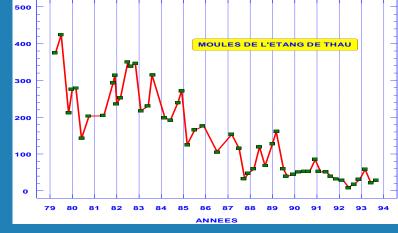
(ancien RNO, depuis 1979)









Lindane dans les moules de pochons exposés en **méditerranée française en 2006** (données RINBIO)




**Problème Biomonitoring: Seulement 2 pesticides** recherchés en routine : Lindane et DDT !!!









#### Lagunes plus contaminées que mer ouverte par DDT et ses métabolites

(données RINBIO)

### Décroissance du DDT dans les moules de Thau 1979-1994

(données ROCCH)



Le ROCCH permet de suivre des tendances à long terme mais là encore seulement 2 pesticides suivis !!!

MAIS QUID de la multitude de molécules actuelles ?

## Modelisation des apports a partir de modèles d'exportation de BV. Exemple de l'étang de Bages (source lfremer, 2006)

| П     | DENTIFICATION DES MOLECULES                                  | APPORTS ETANG DE BAGES |          |          |                               | RATIO D'EXPORTATION ANNUEL |        |        |
|-------|--------------------------------------------------------------|------------------------|----------|----------|-------------------------------|----------------------------|--------|--------|
| ordre | Nom commun                                                   | ZA                     | ZNA      | TOTAL    | EXPORTATION MAX./ EVEN. PLUIE |                            | ZA     | ZNA    |
| ° N   |                                                              | (kg/an)                | (kg/an)  | (kg/an)  | (kg pdt evenmt max)           | (%)                        | %      | %      |
| 1     | Lindane (HCH gamma)                                          |                        |          |          |                               |                            |        |        |
| 2     | AMPA                                                         |                        |          |          |                               |                            |        |        |
| 3     | Chlorpyriphos-ethyl                                          | 5.36E-01               |          | 5.36E-01 | 0.214                         | 40%                        | 0.02%  |        |
| 4     | Diuron                                                       | 7.21E+01               | 4.51E+00 | 7.66E+01 | 24.24                         | 32%                        | 0.89%  | 6.83%  |
| 5     | Glyphosate                                                   | 1.51E+03               | 8.03E+01 | 1.59E+03 | 899.3                         | 57%                        | 5.58%  | 33.32% |
| 6     | Simazine                                                     | 8.93E-01               | 4.98E+00 | 5.87E+00 | 2.29                          | 39%                        | 3.57%  | 17.18% |
| 7     | Terbuthylazine                                               | 4.51E+01               | 2.28E+00 | 4.73E+01 | 15.252                        | 32%                        | 0.52%  | 4.08%  |
| 8     | 2-4 D                                                        | 3.90E-01               | 2.83E+00 | 3.22E+00 | 2.67                          | 83%                        | 13.01% | 31.42% |
| 9     | 2-4 MCPA                                                     | 8.02E+01               | 4.44E+00 | 8.46E+01 | 51.4                          | 61%                        | 16.16% | 40.39% |
| 10    | Atrazine                                                     | 8.55E-01               | 9.37E-01 | 1.79E+00 | 0.513                         | 29%                        | 1.99%  | 11.72% |
| 11    | Azoxystrobine                                                | 4.49E+01               |          | 4.49E+01 | 17.23                         | 38%                        | 2.37%  |        |
| 12    | Carbendazime                                                 | 9.02E+01               |          | 9.02E+01 | 48.76                         | 54%                        | 8.32%  |        |
| 13    | Linuron                                                      | 3.94E-01               |          | 3.94E-01 | 0.182                         | 46%                        | 0.68%  |        |
| 14    | Mécocrop                                                     | 9.10E+01               | 3.20E+01 | 1.23E+02 | 72.8                          | 59%                        | 11.82% | 29.89% |
| 15    | Métolachlor                                                  | 3.30E-01               |          | 3.30E-01 | 0.183                         | 55%                        | 0.30%  |        |
| 16    | Oxadiazon                                                    |                        | 1.10E-01 | 1.10E-01 | 0.035                         | 32%                        |        | 0.13%  |
| 17    | Procymidone                                                  | 9.61E-02               |          | 9.61E-02 | 0.032                         | 33%                        | 0.53%  |        |
| 18    | Tebuconazole                                                 | 3.63E+00               | 1.27E-02 | 3.64E+00 | 1.470                         | 40%                        | 0.16%  | 0.63%  |
| 19    | Terbuthylazine Désethyl<br>(métabolite de la terbuthylazine) |                        |          |          |                               |                            |        |        |

Pas de données Pas d'utilisation

#### **En 2009 : La nouvelle réglementation européenne** de suivi des contaminants chimiques en milieu marin : la DCE (Directive Cadre sur l'Eau)

#### Les 33 substances prioritaires pour lesquelles des NQE sont définies

Benzéniques benzène, hexachlorobenzène, pentachlorobenzène, pentachlorophénol, trichlorobenzène (1,2,4-trichlorobenzène) **(5)** 

HAP Anthracène, fluoranthène, naphtalène, hydrocarbures aromatiques

polycycliques [benzo(a)pyrène, benzo(b)fluoranthène, benzo(k)fluoranthène, **(4)** 

benzo(g,h,i)pérylène, indéno(1,2,3-**c,d)pyrène** 

Métaux Cadmium, mercure, nickel, plomb (et leurs composés)

**(4)** 

H: atrazine, diuron, simazine, isoproturon, trifluraline, **Pesticides** 

1: chlorfenvinphos, chlorpyrifos, endosulfan (alpha- endosulfan), Alachlore, (10)

hexachlorocyclohexane (lindane)

Solvants 1,2-dichloroéthane, dichlorométahne, trichlorométhane

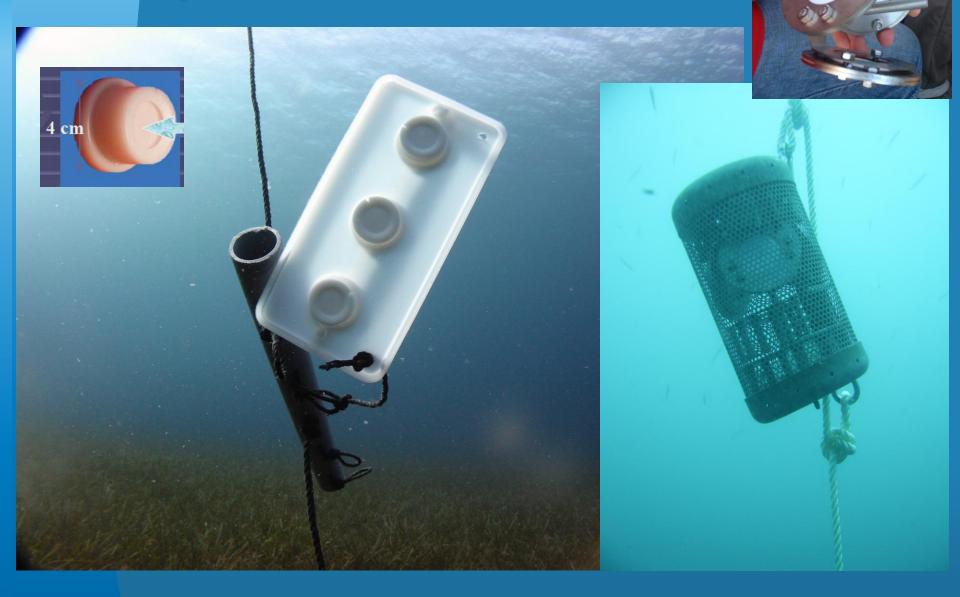
(3)

**(6)** 

Diphényléthers bromés, C10-C13-chloroalcanes, di(2-éthylhexyl)phtalate **Divers** 

(DEHP), hexachlorobutadiène, nonylphénols (4-para-nonylphénol),

octylphénols (para-ter-octylphénol)


Biocide (1) composés du tributylétain (tributylétain-cation)

#### **MIEUX mais sans doute pas suffisant !!!**

# 2008 French Mediterranean Coastal sampling Monitoring passif campagne 2008



## Différents types de monitoring passifs :



### **Results: Pesticides**

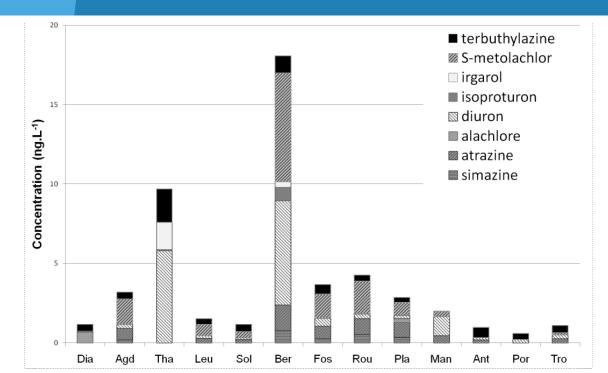
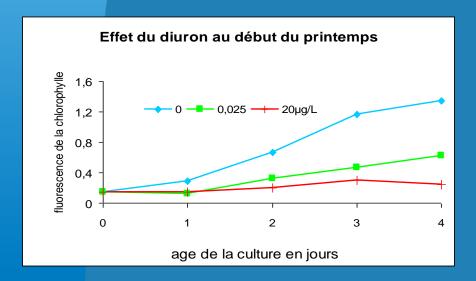
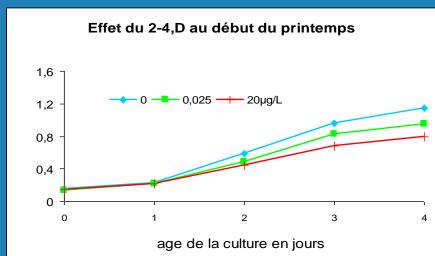



Figure 3 : Concentrations en pesticides retrouvées dans les eaux Méditerranéennes (ng.L-1)

(Dia : Etang Diana ; Agd : Cap d'Adge ; Tha : Etang de Thau ; Leu : Port Leucate ; Sol : Sola ; Ber : Etang de Berre ; Fos : Golfe de Fos ; Rou : Le Rouet ; Pla : Plane Jarre Cortiou ; Man : Saint Mandrier; Ant : Antibes ; Por : Port cros ; Tro : Saint Tropez)





- **a** Low levels detected
- **Always below EQS** 
  - Lagoons,
    semi-closed
    bays, or
    harbors are
    more
    contaminated

## Quels effets sur les biocénoses marines ?

- **A Effets directs:**
- sur des organismes initialement non ciblés (coquillages, poissons, algues)
- inhibition de la photosynthèse, perturbation dans les communautés phytoplanctoniques...
- Effets indirects (faune, consommateur final : l'Homme) :
- cancérigènes, mutagènes, oestromimétiques (perturbateurs endocriniens), tératogènes

#### Effet des herbicides sur une espèce phytoplanctonique d'intérêt : la microalgue *Chaetoceros gracilis*





**Arzul, Quiniou... Ifremer Brest, 2005** 

## Etude de la contamination par des pesticides de l'étang du Vaccarès Roche, Buet & Persic Univ. Paris VI, 2000-2005

#### Organismes analysés



Copépodes sp.



Cerastoderma glaucum



Siriella armata



Gammarus salinus



Crangon crangon



Sphaeroma hookeri



Paleomonetes varians



Syngnathus acus



Muge sp.



Gobius sp.



Atherina boyeri

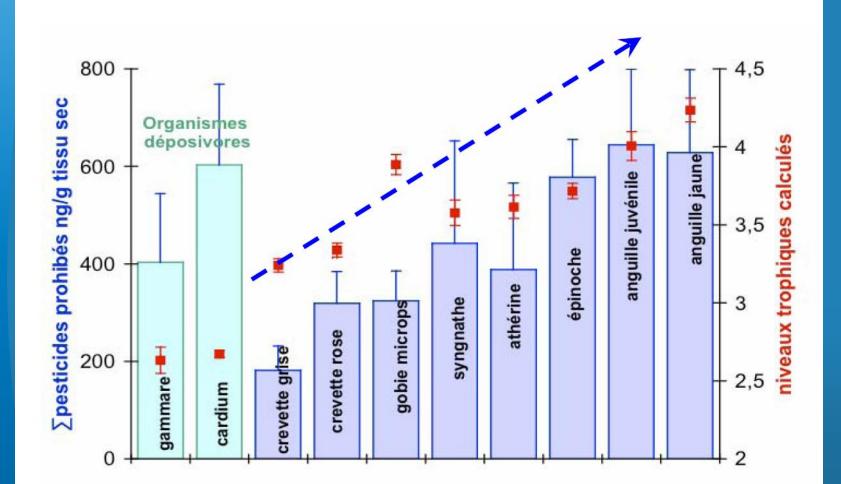


Gasterostrus aculateus

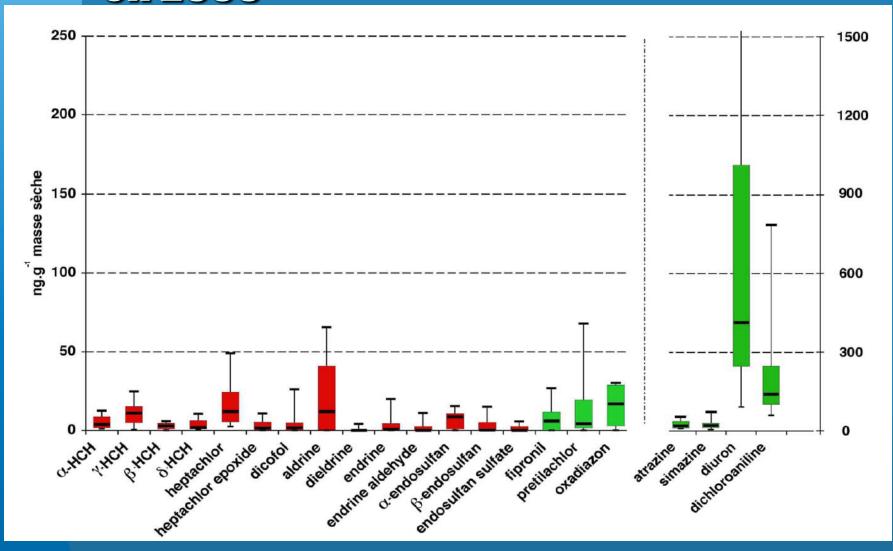


Stizosteidon lucioperca




Lepomis gibbosus




Anguilla anguilla

#### Contamination de la chaîne trophique

Y-a t'il un processus de bioamplification dans l'étang de Vaccarès ?



## Profil de la contamination des anguilles en 2005



#### Bilan histopathologique chez les anguilles

#### Impact sur les organismes

#### Pourcentage d'anguilles affectées

|           | Symptômes                   | Pathologie                                         | Relation avec contamination | Réversibilité | embouchure<br>du Canal de<br>Fumemorte | Etang de<br>Vaccarès |
|-----------|-----------------------------|----------------------------------------------------|-----------------------------|---------------|----------------------------------------|----------------------|
| Branchies | anomalies<br>morphologiques | fusion lamellaire                                  | chronique                   | oui           | 85,7%                                  | 0,0%                 |
|           | parasitismes                | immunodeficience                                   | chronique                   | oui           | 42,9%                                  | 0,0%                 |
| Foie      | prénécrose                  | inflammation                                       | aiguë                       | oui           | 91,7%                                  | 63,2%                |
|           | nécrose                     | inflammation                                       | chronique/aiguë             | oui           | 91,7%                                  | 84,2%                |
|           | lipidose                    | globules lipidiques                                | aiguë                       | oui           | 91,7%                                  | 31,6%                |
|           | apoptose                    | mort cellulaire<br>rarement au niveau<br>hépatique | chronique                   | ?             | 58,3%                                  | 31,6%                |
|           | prénéoplasme                | cancer                                             | chronique                   | non           | 16,7%                                  | 10,5%                |
|           | tumeur                      | cancer                                             | chronique                   | non           | 16,7%                                  | 0,0%                 |
|           | mélanomacrophagie           | reponse immunitaire                                | chronique/aiguë             | oui           | 33,3%                                  | 26,3%                |
| Rate      | prénécrose                  | inflammation                                       | aiguë                       | oui           | 58,3%                                  | 21,1%                |
|           | nécrose                     | inflammation                                       | chronique/aiguë             | oui           | 58,3%                                  | 26,3%                |
|           | tumeur                      | cancer                                             | chronique                   | non           | 16,7%                                  | 0,0%                 |
|           | mélanomacrophagie           | reponse immunitaire                                | chronique/aiguë             | oui           | 100,0%                                 | 100,0%               |

## Mer / lagune = Réceptacle final de toute pollution

Nous pouvons faire que les choses changent!

